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Introduction

Accurate identification of tumor cells is crucial for clinical diagnosis and 
treatment, yet traditional fluorescence microscopy methods rely on manual 
interpretation, leading to inefficiency and subjectivity. While deep learning 
offers automation potential, its performance depends heavily on large-scale 
pixel-level annotations, which are costly and expert-dependent. To overcome 
these limitations, self-supervised learning (SSL) [1] has emerged as a 
promising alternative. However, existing SSL approaches face challenges in 
feature representation, model generalization across modalities, and 
explainability at the cellular level.
This paper proposes FMIC-AI, an annotation-free framework for tumor cell 

detection based on self-supervised anomaly detection (SSAD). The framework 
incorporates a Vision Transformer (ViT) to preserve local cell features and uses 
Triple Mean-Shift Contrastive Loss (TMSCL) [2] to enhance representation 
learning of normal regions. It integrates self-supervised fine-tuning (SSFT) 
with CellPose for universal cell segmentation and combines Grad-CAM++ 
with cell mask information for multi-level anomaly localization (MAL), 
enabling precise detection from image patches to individual cells. By reducing 
annotation dependence and improving accuracy, FMIC-AI offers an efficient 
tool for clinical pathology analysis.

Method

Fig. 1. Method of the SSAD-based Network.

The FMIC-AI framework integrates three core components: an SSAD-based 
network for anomaly detection, universal cell segmentation with SSFT, and 
multi-level anomaly localization (MAL). 

As illustrated in Fig. 1, the SSAD network replaces ViT's fully connected layer 
with a non-linear projector (comprising linear transformation, batch 
normalization, and ReLU) to enhance discriminative feature representation. 
During training, triple-view inputs are generated using RandomResizedCrop 
and ColorJitter augmentations, while TMSCL constrains feature consistency 
across perspectives. The anomaly scoring mechanism employs k-nearest 
neighbors (KNN, k=2) to compute patch-wise distances in the normal feature 
space, with dynamic thresholding for adaptive abnormality classification across 
datasets.
For cell segmentation, CellPose [3] —based on an enhanced UNet—generates 

initial predictions, from which high-quality results with clear boundaries and 
minimal overlap are manually selected as pseudo-labels for model fine-tuning, 
ensuring morphological diversity and representation. 
The MAL module combines Grad-CAM++ with a sliding window approach 

(window size: 512×512, stride: 412) to process image patches independently. 
Results are aggregated using a maximum-value fusion strategy that accounts 
for overlap and anomaly scores. Cell-level masks from segmentation are 
integrated to extract per-cell anomaly scores, enabling reconstruction of global 
tumor cell distribution while optimizing computational efficiency.

Experiments and Results

Backbone comparison (Table 1) shows ViT achieved superior performance (AP: 
0.961, ROC-AUC: 0.984, PR-AUC: 0.958), outperforming ResNet, 
EfficientNet, and RegNet. Comparative SSL analysis (Table 2) demonstrates 
our method exceeds FPI, MSC, CutPaste3Way, and CutPasteNormal across all 
metrics. Ablation study (Table 3) validates full framework (AD+Seg+Loc) 
achieves highest performance (ROC-AUC: 0.934, Recall: 0.89), demonstrating 
critical component synergy.

Conclusion

The FMIC-AI framework enables high-precision, annotation-free tumor cell 
detection using SSL, achieving an AUC of 0.934 and a recall of 0.89 on 
fluorescence microscopy test data, outperforming conventional methods. By 
integrating SSFT and MAL, the system accurately locates and segments 
abnormal cells, demonstrating strong potential for clinical prognosis analysis.
Current limitations include sensitivity to normal cell diversity due to dataset 

constraints and occasional missed small cells from limited feature resolution. 
Future work will expand data diversity to include brightfield and phase-
contrast microscopy and enhance feature extraction with multi-scale or 
attention mechanisms. Although currently validated on fluorescence imaging, 
FMIC-AI’s framework is extendable to histopathology and large-scale cancer 
research, providing a scalable solution for label-scarce scenarios like 
personalized medicine.
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Backbone AP ROC-AUC PR-AUC

ResNet 0.954 0.976 0.952
EfficientNet 0.884 0.950 0.881

RegNet 0.946 0.971 0.944
ViT 0.961 0.984 0.958

Table 1. Comparison of Different Backbones in SSAD-based Network.

Backbone AP ROC-AUC PR-AUC
FPI 0.774 0.712 0.775

MSC 0.727 0.802 0.723
CutPaste3Way 0.912 0.920 0.911

CutPasteNormal 0.913 0.939 0.917
Ours 0.961 0.984 0.958

Table 2. Comparison of Different SSL Methods.

Method ROC-AUC Recall
AD 0.881 0.87

AD + Seg + Loc 0.934 0.89

Table 3. Ablation Study. "AD" refers to the SSAD-based network, "Seg" to 
universal cell segmentation with SSFT, and "Loc" to multi-level anomaly 

localization.


