
Setup and Implementation

  Dataset: BTCV Challenge (13 abdominal organs, 30 CT volumes).

  Metrics: Dice Score (↑), HD95 (↓) indicating a higher accuracy.

  Implementation:The model was used to made 200epochs of training.

Key Results

  Baselines: CNN/Transformer-based (nnU-Net, SwinUNETR) and SAM 

fine-tuned models (3DSAM-adapter).

1.Superior Performance:

   Achieves 85.5% average Dice (↑1.0% vs. SOTA) and 2.91mm​HD95 

(↓1.0mm vs. SwinUNETR).

Excels in challenging organs: Gallbladder (80.1% Dice ↑15.7%), Adrenal 

Glands (70.3% Dice ↑5.4%).

 

Robust boundary delineation (Fig. 2):

2.Ablation Studies:

  Further explore the effectiveness of each component.

  Removing GoF ↓ Dice by 0.5%, ↑ HD95 by 0.07mm.

  Excluding weight-sharing ↓ Dice by 0.9%, ↑ HD95 by 53.57mm (critical 

for anatomical coherence).

  Without Split-Adapter ↓ Dice by 5.2%, ↑ HD95 by 73.16mm (confirms 

feature-disentangling efficacy).

 

OG-SAM addresses critical challenges in multi-organ 

segmentation by integrating biological priors of organogenesis 

into the Segment Anything Model (SAM). Traditional methods 

(e.g., thresholding, CNNs, Transformers) struggle with nuanced 

organ relationships and morphological variability due to shared 

embryonic origins and size disparities. For instance, the liver and 

pancreas (both endoderm-derived) exhibit textural differences that 

complicate segmentation. OG-SAM overcomes these via:

 

1.OrganAdapt:Dynamically parameter sharing/specialization 

across organs based on developmental hierarchies.

 

2.GoF Module: Adaptively fuses multi-scale features using organ-

specific parameters to address size variability.

 

As a query-based plug-in, OG-SAM uses organ classes as 

prompts to gate adaptations, enhancing boundary accuracy.

Parameter-Efficient Adaptation

Leverages SAM’s ViT-B backbone with LoRA (form. 2) and 

Adapters (form. 3), reducing computational costs while 

maintaining expressivity (form. 4).

∆θ = ABT , A ∈ R d×r , B ∈ R d×r ,            (2) 

h’=h+H(h)=h+W up(σ(Wdown ​h)),         (3)

hi+1​=fiΘ(h i+H(h i)),whereΘ=θ0​+ABT,   (4)

OG-SAM integrates two core components:

OrganAdapt(§2.3):

The hierarchical development of organs（Fig.1A)，where an 

embryo gradually developing into distinct organs.

 

Weight-Sharing Graph: 

Mirrors embryonic development (Fig.1B), where early layers 

share weights across germ layers (e.g., endoderm), later layers 

specialize organ-specifically.

 

   Our Organ Adaptation (Fig. 1D) consists of three key 

components, each split by additive operations: the Split-Adapter, 

Low-Rank Factors, and a MLP。
（ Split-Adapter: Processes input features via convolutional 

branches and dot-product operations (form. 5), updating features 

while preserving anatomical coherence.）
（ Low-Rank Factors: Projects features into Key/Value 

representations for attention mechanisms (form. 6), optimizing 

parameter efficiency.）
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OG-SAM pioneers biologically inspired adaptation for multi-organ 

segmentation:

  OrganAdapt aligns parameter sharing with organogenesis, ensuring 

anatomical consistency.

  GoF dynamically fuses multi-scale features via organ-specific modulation.

As a plug-in, it enables efficient specialization without full retraining. 

Limitations include dependency on organ-query design and unexplored 3D 

extensions. Future work will incorporate non-parenchymal structures (e.g., 

blood vessels) and expand to thoracic/pelvic organ segmentation, advancing 

scalable precision medicine.

ha = Wup（σ(Conv1(˜h))⊙σ(Conv2(˜h))+ h, where ˜h =Wdown N(h), (5)

Q = Wq (N(ha)), [K, V ] = BA(N(ha)), (6)

2.Generalized Organ-feature Fusion (§2.4):

Extracts pyramidal features from SAM blocks, computes attention scores 

via MLPs (form. 7).

Fuses features using learnable parameter p(form. 8), enabling organ-

specific aggregation (e.g., prioritizing fine scales for small organs like 

adrenal glands).

S = W2(σ(W1Qo)), (7)

f ′ = (G) 1/p , where G = (∑i (Sifi)
p)/(∑iSi), (8)
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