OG-SAM: Enhancing Multi-Organ Segmentation with Organogenesis-Based Adaptive
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OG-SAM addresses critical challenges 1n multi-organ
segmentation by integrating biological priors of organogenesis
into the Segment Anything Model (SAM). Traditional methods

(e.g., thresholding, CNNs, Transformers) struggle with nuanced
organ relationships and morphological variability due to shared
embryonic origins and size disparities. For instance, the liver and
pancreas (both endoderm-derived) exhibit textural differences that

complicate segmentation. OG-SAM overcomes these via:

1.0OrganAdapt:Dynamically  parameter  sharing/specialization

across organs based on developmental hierarchies.

2.GoF Module: Adaptively fuses multi-scale features using organ-
specific parameters to address size variability.

As a query-based plug-in, OG-SAM uses organ classes as
prompts to gate adaptations, enhancing boundary accuracy.

Viethodoloc

Parameter-Efficient Adaptation

Leverages SAM’s ViT-B backbone with LoRA (form. 2) and
Adapters (form. 3), reducing computational costs while
maintaining expressivity (form. 4).
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OG-SAM integrates two core components:
OrganAdapt(82.3):

The hierarchical development of organs (Fig.1A), where an
embryo gradually developing into distinct organs.

Weight-Sharing Graph:

Mirrors embryonic development (Fig.1B), where early layers
share weights across germ layers (e.g., endoderm), later layers
specialize organ-specifically.

Our Organ Adaptation (Fig. 1D) consists of three key
components, each split by additive operations: the Split-Adapter,
Low-Rank Factors, and a MLP,

( Split-Adapter: Processes input features via convolutional
branches and dot-product operations (form. 5), updating features
while preserving anatomical coherence.)

( Low-Rank Factors: Projects features into Key/Value
representations for attention mechanisms (form. 6), optimizing
parameter efficiency. )

Modeling
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2.Generalized Organ-feature Fusion (§2.4):

Extracts pyramidal features from SAM blocks, computes attention scores
via MLPs (form. 7).

Fuses features using learnable parameter p(form. 8), enabling organ-
specific aggregation (e.g., prioritizing fine scales for small organs like
adrenal glands).
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Setup and Implementation
Dataset: BTCV Challenge (13 abdominal organs, 30 CT volumes).
Metrics: Dice Score (1), HD95 (|) indicating a higher accuracy.
Implementation: The model was used to made 200epochs of training.
Key Results
Baselines: CNN/Transformer-based (nnU-Net, SwinUNETR) and SAM
fine-tuned models (3DSAM-adapter).
1.Superior Performance:
Achieves 85.5% average Dice (11.0% vs. SOTA) and 2.91mmHD95
({1.0mm vs. SWinUNETR).
Excels 1n challenging organs: Gallbladder (80.1% Dice 115.7%), Adrenal
Glands (70.3% Dice 15.4%).

Robust boundary delineation (Fig. 2):
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2.Ablation Studies:

Further explore the effectiveness of each component.

Removing GoF | Dice by 0.5%, T HD95 by 0.07mm.

Excluding weight-sharing | Dice by 0.9%, + HD95 by 53.57mm (critical
for anatomical coherence).

Without Split-Adapter | Dice by 5.2%, T HD95 by 73.16mm (confirms
feature-disentangling efficacy).

Conclusion

OG-SAM pioneers biologically inspired adaptation for multi-organ
segmentation:

OrganAdapt aligns parameter sharing with organogenesis, ensuring
anatomical consistency.

GoF dynamically fuses multi-scale features via organ-specific modulation.
As a plug-in, 1t enables efficient specialization without full retraining.
Limitations include dependency on organ-query design and unexplored 3D
extensions. Future work will incorporate non-parenchymal structures (e.g.,
blood vessels) and expand to thoracic/pelvic organ segmentation, advancing
scalable precision medicine.
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